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Abstract-A mathematical analysis of the elasto-plastic anti-plane shear problem of a power-law
hardening material with infinitesimal deformations is presented in this paper. Hencky's deformation
theory and von Mises' yield criterion are used in the analysis. The formulation is facilitated by using
a complex variable representation and by choosing the only non-vanishing displacement component
as the basic unknown. By introducing a differential transformation, the non-linear equation system
describing the problem is first reduced to a solvable system of two partial differential equations. A
general solution of this equivalent system is then derived using analytic function theory. Finally,
one class of closed-form solutions is obtained for the telescope shear type problem of the power­
law material by applying the general solution directly. Copyright © 1996 Elsevier Science Ltd.

I. INTRODUCTION

Anti-plane shear (or longitudinal shear) problems have been well studied in the context of
elasticity theory because of their simplicity. Closed-form solutions of and general dis­
cussions on such problems with infinitesimal deformations are readily available [see e.g.
Milne-Thomson (1962); Eshelby (1979); Atkin and Fox (1980); Horgan and Miller
(1994)]. Vigorous analyses for finite anti-plane shear problems are also rich in the literature
[see e.g. Adkins (1954); Knowles (1976, I977a,b) ; Gurtin and Temam (1981); Abeyaratne
and Horgan (1983); Jiang and Knowles (1991); Polignone and Horgan (1992); Raymond
(1993)]. However, this is not the case for elasto-plastic anti-plane shear problems. Available
elasto-plastic analytical solutions are rather limited and are for stress concentration prob­
lems only. For example, Koskinen (1963) and Rice (1966) provided solutions for not­
ched/cracked prismatic bodies of elastic-perfectly plastic materials; Neuber (1961), Rice
(1967) and Amazigo (1974) presented solutions for similar bodies of strain-hardening
materials. All these solutions were obtained by using the hodograph transformation tech­
nique based on implicit function theory, which makes the roles of the dependent variables
and independent variables interchange and thus reduces the non-linear problems to linear
ones. In addition, a solution for an infinite strain-hardening medium with a circular hole
was derived by Tuba (1969) using a perturbation method. It seems, to the best of the
author's knowledge, that no closed-form solution has yet been reported for an elasto­
plastic anti-plane shear problem other than stress concentration problems. Also, general
procedures for treating this class ofelasto-plastic problems in a systematic and conventional
way are lacking. Therefore, further studies are still needed.

In this paper we intend to present a general mathematical analysis of the elasto-plastic
anti-plane shear problem of a power-law material with infinitesimal deformations and to
derive possible closed-form solutions of such problems. In Section 2 the problem is for­
mulated by using a complex variable representation and by choosing the only non-vanishing
displacement component as the basic unknown. This formulation is based on Hencky's
deformation theory and von Mises' yield criterion. The non-linear equation system descri­
bing the problem is reduced to a solvable system of two partial differential equations by
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introducing a differential transformation. A general solution of this equivalent system is
then obtained using analytic function theory.

In Section 3 one family of boundary-value problems of the telescopic shear type are
solved by applying the general solution directly. Consequently, one class of closed-form
solutions is obtained for this type of elasto-plastic anti-plane shear problem, which include
the corresponding elastic solutions as special cases.

A summary of the analytical development presented in the paper is provided in Section
4. The limitations of the present analysis are also indicated.

2. FORMULAnON OF THE PROBLEM

Under the assumptions of infinitesimal deformations, isotropic hardening, monotone
loading without unloading, no body forces acting and material incompressibility, the basic
equations, which embody Hencky's deformation theory and von Mises' yield criterion, for
a power-law hardening body under anti-plane shear are as follows:

the equilibrium equation

the geometrical equations

aTd ard-:')- + -~-' = 0,
ex oy

(1)

and the constitutive equations

aw
Ix3 = ox'

ow
1,-3=;;-,

. uV
(2)

(3)

(4)

where A and n are material constants, with A > 0 and 0 < n ~ I ; and (Je and 6e are,
respectively, the effective stress and strain, with

(5)

In the above equations, w is the only non-vanishing displacement component, w = w(x,y);

rd, ry3 are the non-vanishing stress components, r x 3 = rx 3(x,y), r y3 = ry3 (x,y); and IX3/2,
ly3/2 are the non-vanishing strain components, Ix3 = fd(X,Y), ly3 = ly3(X,y). For
simplicity, we shall call IX3 and ly3 strain components instead. Also, we mention in passing
that the subscript 3 in the above expressions stands for the direction normal to the x-y
plane.

Equations (1)-(5) in conjunction with suitable prescribed boundary conditions define
the boundary-value problem for determining the stress, strain and displacement fields in
the body considered. We note that no compatibility equations appear here. The reason for
this is that we choose the displacement component w(x,y) as the basic unknown so that
the strain components in terms of w, as given in eqn (2), are themselves compatible.

It is clear that this is a plane problem with the Cartesian coordinates (x, y) as two
independent variables. Hence, we can use a complex variable representation. To this end,
we introduce the complex conjugate variables z = x+ iy and z = x - iy, where i = ( -1) 1/2

as usual. Then it follows that
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(6)

These bijective relations (identities) allow us to use (z,z) as two independent variables in
place of (x,y). Using eqn (6) in eqn (2) gives

(
OW OW)

Yy 3 = 1 GZ - OZ . (7)

Substituting eqn (7) into eqn (5) results in

E= ~ (aw aW)1 2
e ')3 az az

Inserting eqn (7) into eqn (3) and using eqns (4) and (8) will yield

_ (OW aw)n~ 1 (aw OW) _ (aw aw)n~ 1 • (aw _ aw)
'-,3 - K a a- a + a-' T V3 - K a a- 1 a a-'zz z z· zz z z

where

(8)

(9)

(10)

is a constant.
If we were to substitute eqn (9) into eqn (1), we would obtain the final governing

equation of the problem for the unknown w(z,z) == w(x,y). However, since the expressions
of T x 3 and Ty 3 in terms of w(z, z), as given in eqn (9), are already in very complicated forms,
the resulting governing equation from this intended substitution will be highly non-linear
such that it is impractical to solve the equation analytically. Hence, it is desirable to simplify
these expressions before the required substitution. By inspection, it is found that one
possible such simplification is to introduce the following differential transformation:

n- 1

(
OW 011')-2- aw _ 0\11
OZ OZ oz = 8;' (11 )

where \II = \II(z, z) is an analytic function yet to be determined. With this transformation,
eqn (9) reduces to

(12)

Now substituting eqn (12) into eqn (1) will give

(13)

This is Laplace's equation for the unknown \II. As a well-studied linear equation in potential
theory, its solution is readily obtainable. In this way, we have overcome the difficulty of
having to solve the otherwise highly non-linear governing equation just mentioned above.
However, we have yet to answer the question whether eqn (11), which defines \II(z,z)
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through its first derivatives that are expressed in terms of the first derivatives of w(z, z), can
establish a unique relation between 'P(z, z) and w(z, z). In other words, we need to find the
condition under which such an analytic function 'P(z, z) exists.

From analytic function theory [see e.g. Flanigan (1972)], it follows that an analytic
function may be obtained from its exact differential by integration. Hence, to explore the
existence of 'P(z, z) is equivalent to finding out its exact differential d'P. By definition, we
have

v'P v'P
d'P = ~dz+ vz dz,

while from eqn (11) it follows that

v'P v'P
~dz+ vz dz = M(z,z)dz+N(z,z)dz,

where

M(z, z) == (~; ~;)n~ 1 ~;, N(z, z) == (~; ~;)n~ 1 ~; •

(14)

(15)

(16)

Note that M dz + N dz is an exact differential if and only if [see e.g. Boresi and Chong
(1987)]

vM aN
vz =~.

Then substituting eqn (16) into eqn (17) yields

with (vwjvz)(vwjvz) =I- 0 [i.e. Ce =I- 0 from eqn (8)].
Now note that from eqn (11) we have

I-n l-n

VW (8'1' O'P)~ 8'1' 8w _ (8'1' 8'P)~ 8'1'
VZ = ~ 8z ~'8z - 8z VZ 8z

for v'Pjvz =I- 0 and 8'1'fvz =I- O. Then using eqn (19) in eqn (18) will give

(17)

(18)

(19)

(20)

for (0'1' joz) (8'1' j8z) =I- O. This is the necessary and sufficient condition for the existence of
'I'(z, z), which is to be determined from its first derivatives defined in eqn (11) by integration.

Thus the original equation system defined in eqns (1)-(5) has already been transformed
to the following equivalent system
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(2 la-b)

subject to the condition (01J'10z)(01J'loz) -:j; O. A general solution of this system can now be
derived.

Since eqn (2la) is a Laplace equation, any harmonic function lJ'(x,y) = lJ'(z,z) is a
solution of it. Hence, either the real or imaginary part of any analytic function can be a
solution ofeqn (2Ia). Suppose thatf(z) = p(x,y) + iq(x, y) is an analytic function; then it
follows that

p(x,y) =Ref(z) = Hf(z)+f(z)]' q(x,y) =Imf(z) = ~i (f(z)-f(z)], (22)

where Re and 1m denote, respectively, the real and imaginary parts, and the superposed
bar denotes the conjugate of the function.

Now we choose q(x,y) to be a solution ofeqn (2la), i.e.

Then it follows that

I -
lJ'(z,z) = li(f(z)-f(z)]. (23)

01J' Ia; = li f'(z),
01J' 1­
oz = - lif'(z),

(24a--e)

Equation (24e) implies that eqn (2Ia) is automatically satisfied. Substituting eqns (24a~)

into eqn (21 b) will yield

(25)

Clearly,f'(z) = 0 (for some z) is a trivial solution ofthis equation. Note that if an analytic
function vanishes in part of a domain, then it is zero in the entire domain [see e.g.
Muskhelishvili (1953)]. Then this solution givesf'(z) =0 for all z, and thus it follows that
fez) = constant in the whole domain, which is of no interest. Hence, we exclude this trivial
solution by assuming f'(z) -:j; O. In fact, this is also required by the condition
(olJ'loz)(olJ'loz) -:j; 0, as seen from eqns (24a,b). Withf'(z) -:j; 0, it then follows from eqn
(25) that

Note that

I"(z)

[f'(zW

I"(z)

[f'(zW
(26)
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f"(z) .
G(z) == = R(X,Y)+IS(X,y); R(x, V) == Re G(z), S(x,y) == 1m G(z) (27)

[f'(zW '

is also analytic for any z satisfyingI' (z) # O. Then we have the Cauchy-Riemann conditions

oR oS oR
ox = oy' oy

Now from egns (27) and (26) we obtain

R(x,y) = 0,

G(z) = is(x,y).

Then using eqns (29a,b) in egn (28) gives

S(x,y) = -c,

where C ('I 0) is a real constant. Thus it follows from eqns (27), (29b) and (30) that

f"(z) .
~~_.= -Ie.
[f'(zW

Integrating eqn (31) twice will give

I
fez) = iCln(z+D)+E,

(28)

(29a)

(29b)

(30)

(31)

(32)

where D and E are two complex constants. Thus combining egns (23) and (32) yields

\fez, z) == \f(x, y) = Imf(z),

I
fez) = iCln(z+D)+E.

(33a)

(33b)

Clearly, we have from eqns (33a,b) that (o\f/oz)(o\f/oz) # 0 and f'(z) # 0 for any finite
domain, as expected. Hence, eqns (33a,b) give a general solution of the equivalent system
defined in eqns (21a,b). In other words, any such analytic function fez) can solve the
equivalent system and thus the original system exactly. Similarly, by choosingp(x,y) to be
a solution of eqn (2Ia) we find that

I
\f(z,z) = Ref(z), fez) =c;-ln(z+D))+E1 (34)

is also a general solution of the equivalent system, where C 1 (#0) is a real constant and D)
and E) are two complex constants. It is apparent that these two solutions are of the same
type. Hence, we do not call them two general solutions.

Now we are in a position to derive the expressions for the stress, strain and displacement
components in terms of\f(x, y). Note that \f(x,y) == \fez, z). Then using eqn (6) yields

(35)

Thus using eqn (35) in eqn (12) gives the stress components as
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o'P o'P
L.d = K-;-, Ly 3 = K-;-.

ux uy

Similarly, using eqns (35) and (19) in eqn (7) yields the strain components as

2219

(36)

Next, note that

r r (OW ow) rw(x,y) = Jr dw(x,y) = Jr ox dx+ oy dy = Jr (Yd dX+Yy 3 dy), (38)

where the last equality is obtained from eqn (2). Then using eqn (37) in eqn (38) will finally
give the displacement component as

r {l [(O'P)2 (O'P)2J}12~n(a'P O'P)
w(x,y) = Jr 4. ax + oy ax dx+ oy dy , (39)

where r, as the integration path, is a curve without singular points.
Once the harmonic function 'P(x,y) is determined from given boundary conditions,

the stress, strain and displacement fields in a power-law hardening body under anti-plane
shear will readily be calculated from eqns (36), (37) and (39).

3. ONE CLASS OF CLOSED-FORM SOLUTIONS

As a direct application of the general solution, we consider the simplest solution
functionf(z). Consequently, we obtain from eqn (33b), by setting D = 0 = E:

1
fez) = :-In z.Ie

In the cylindrical polar coordinates (r, 8), this becomes

where

Thus using eqns (41) and (42) in eqn (33a) will yield

Similarly, by setting D] = 0 = E 1 we obtain from eqn (34) that

(40)

(41)

(42)

(43)
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(44)

Obviously, eqn (44) will be identical to eqn (43) if we take C 1 = - C. Hence, we only
consider the harmonic function given in eqn (43) in our analysis. This harmonic function
provides one possible class of solutions for anti-plane problems of the power-law material.
We show in the following that it does solve one type of such problems.

Consider a problem of the telescopic shear type, i.e. a long hollow cylinder
(Rj ~ r ~ Ro) with its inner surface welded to a rigid cylinder and its outer surface subjected
to a uniform longitudinal shear, (force/unit area, ' > 0). In the context of non-linear
elasticity, this type ofproblem has been studied well [see e.g. Polignone and Horgan (1992)].

The boundary conditions are

Wlr=R;=O,

(45a)

(45b)

where n is the unit outward normal vector to the (outer) surface of the cylinder and t(n) is
the traction vector associated with n. Clearly, these are mixed-kind boundary conditions.

Suppose that 'P(x,y), given in eqn (43), will solve this problem. Then it follows from
eqn (43) that

o'P x o'P 1 y
ox = - C x 2+y2 ' oy = - C x2 +y2 .

Substituting eqn (46) into eqn (36) gives

(46)

K x, - -----
x3 - C x2 +y2'

K Y
'y3 = -----.

C x2+y2
(47)

Note that for the present cylinder problem we have

(1 = 'x3(e} ® e3+e3 ® e t ) +'y3(e2 ® e3 +e3 ® e2),

nlr=Ro = (coslXel +sinlXe2)lr=R, nlr=R = -(coslXe} +sinlXe2)lr=R,
o. • (48a-e)

where (1 is the Cauchy stress tensor, IX is the angle between the x-axis and n, and {e},e2,e3}
are the base vectors of the Cartesian coordinate system. Then it follows from eqns
(48a,b,d,e) that

Using eqns (47) and (49) in eqn (45a) will give
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(50)

Next, using eqn (46) in eqn (39) and carrying out the integration along the path r: e= con­
stant will give

(
1 )lln n

w(r,e) = w(R j ,e)+2 2C 1_n(r1-(l/n)-R j
1-CI/n)) (51)

for n i= 1. This can satisfy the remaining boundary condition, eqn (45b), for any C (i=0).
Thus inserting eqn (50) into eqn (43) gives the solution function of this problem as

(52)

With 'P(x,Y) so determined, the stress, strain and displacement components can easily be
obtained from eqns (36), (37) and (39). Consequently, the stress components are obtained
as

the strain components as

cose
'-d = -rRo--,

r

sin e
r)'3 = -rRo --,. r

(53)

(
r)lln(R )l/n

(x3 = - (~3) I +Clln) A --:- cos e,

( )
lin (R )lln

{y3 = _(~3)I+Cl/n) ~ -;- sine,

and the displacement component as

( )
lln[ (R )li

n
(R )llnJw(r, e) = (~3) 1+(l/n) 1:n ~ r --:- - R j R~

forni=l,or

3rRo R j

w(r, e) = --In­
E r

(54)

(55)

(56)

for n = 1, A == E, with E being Young's modulus. Equation (56) gives the displacement
component of the elastic solution. Similarly, when n = 1, eqn (54) reduces to the strain
components of the elastic solution, while eqn (53), which gives the stress components,
remains the same for the present problem.

The other two slightly different problems of this type, i.e. the problem with mixed­
kind boundary conditions

(57)

and the problem with second-kind boundary conditions
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(58)

where D( > 0) is a real constant, can also be solved using the same harmonic function '¥(x, y)
and following the same procedures as for the problem just solved above. Consequently, the
solution of the first problem is found to be :

(J3y+l ,R I
'¥(x,y) = -lln---

2n-1 A .J(x2 +i)
cos 0 sin 0

Td = -,Rj --, 'y3 = -,Rj --,

r r

(
, )lln (R)I/n

rX3 = _(.J3)'+(1/nJA --; cosO, (
, )I/n (R)I/n

ry3 = _(.J3)1+(I/nJA --; sinO, (59)

n (,)lln[ (R)I/n (R)lln]w(r,O) = (.J3) I +(llnl I-n A r --; -RoR:

3,Ri Ro
w(r,O) = £In-;:- (n = I,A == E).

(n =f. 1),

When n = I, eqn (59) gives the elastic solution of this problem.
The solution of the second problem is found to be:

(
D)n (I )n _[ (Ro)1 -( 1Inl]-n I'¥(x,y) =2 - --1 Ri n 1- - In ,
2 n R1 .J(x2+y2)

'.d = _ ARi (~_I)n(~)n[I_(Ro)I-(I/n)]-ncoso,
(.J3Y+ 1 n R; Rj r

'3 = _ AR; (~_I)n (~)n [1- (Ro)l-(llnl]-n sin 0,
y (.J3Y+' n R; R; r

_ (I ){ [ (Ro)I-(llnl]}-I(Rj)lln
rx3 - -D - -I R; 1- -R- - cosO,

n ; r

. _ (I ){ [ (Ro)I-(llnJ]}-I(Ri)l/n.y 3 - - D - - I R I - - - SIll 0
y n 1 R

j
r'

(60)

I-(r/Ry-('Inl
w(r, 0) = D----'--'----'-'-­1-(Ro/RJl-(llnl

In (r/RJ
(n =f. I), w(r,O) = Din (Ro/RJ (n = I).

When n = I, eqn (60) reduces, by a suitable limiting process, to the elastic solution identical
to that given in Atkin and Fox (1980) for the same problem.

4. SUMMARY

The mathematical analysis presented here is conventional in contrast to those analyses
based on the hodograph transformation technique, i.e. the roles of the independent and
dependent variables are not interchanged in the present analysis. This analysis is made
possible by using a complex variable representation and by introducing a differential
transformation.

The formulation is for a power-law material (incompressible) and for infinitesimal
deformations. Hencky's deformation theory and von Mises' yield criterion are used to
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represent the constitutive relations of the problem. However, for (incompressible) power­
law materials with infinitesimal deformations and under monotonic proportional loading
the use of an incremental theory would lead to the same results [see Ilyushin (1946)].

The general solution of the equivalent system derived in Section 2 is of a special type.
This is due to the limitations of the differential transformation, but not the original system
itself. In other words, the present analysis, being based on a differential transformation of
a special property, can only lead to one particular type of solution of the original system.
There can be other types of solutions which may also be derived by using analytical
approaches, as the original system is a non-linear one and does not have any fixed solution
form. However, whether such approaches are still conventional needs further investigation.

As a direct application of the general solution, we show that one class of closed-form
solutions of the telescope shear type problem of the power-law material can easily be
obtained in a unified way, which include their linear elastic counterparts as special cases.
These solutions may alternatively be obtained by direct integration, as the telescope shear
type problem considered is axisymmetric and is governed by a non-linear ordinary differ­
ential equation (of first order when expressed in terms of the stress component and using
the polar coordinates). However, the procedures to be followed in the latter approach will
be totally different from those presented here.
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